Wydział Biologii i Biotechnologii
Typ | Tytuł | Opis | Dziedzina | Termin |
---|---|---|---|---|
Lekcja festiwalowa | Po co komu enzymy? - odkrywanie tajemnic reakcji enzymatycznych |
Podczas zajęć zbadamy wpływ temperatury, stężenia jonów wodorowych (pH) oraz inhibitora (czynnika hamującego) na szybkość reakcji przebiegającej z udziałem enzymu, na przykładzie fosfatazy kwaśnej. Aktywność fosfatazy kwaśnej silnie wzrasta w niektórych chorobach nowotworowych, w chorobach wątroby i kości. Stąd też jest wykorzystywana w diagnostyce medycznej jako tzw. enzym wskaźnikowy. Z kolei rolą fosfatazy u roślin jest uwalnianie fosforanu ze związków organicznych m.in. w warunkach stresu środowiskowego np. zasolenia, deficytu wody czy ataku patogenów. Jak zmienia się szybkość reakcji gdy enzym znajduje się w mniej sprzyjających warunkach? Na to i inne pytania postaramy się opowiedzieć podczas naszych wspólnych działań eksperymentalnych w laboratorium. |
|
|
Lekcja festiwalowa | Po co komu enzymy? - odkrywanie tajemnic reakcji enzymatycznych |
Podczas zajęć zbadamy wpływ temperatury, stężenia jonów wodorowych (pH) oraz inhibitora (czynnika hamującego) na szybkość reakcji przebiegającej z udziałem enzymu, na przykładzie fosfatazy kwaśnej. Aktywność fosfatazy kwaśnej silnie wzrasta w niektórych chorobach nowotworowych, w chorobach wątroby i kości. Stąd też jest wykorzystywana w diagnostyce medycznej jako tzw. enzym wskaźnikowy. Z kolei rolą fosfatazy u roślin jest uwalnianie fosforanu ze związków organicznych m.in. w warunkach stresu środowiskowego np. zasolenia, deficytu wody czy ataku patogenów. Jak zmienia się szybkość reakcji gdy enzym znajduje się w mniej sprzyjających warunkach? Na to i inne pytania postaramy się opowiedzieć podczas naszych wspólnych działań eksperymentalnych w laboratorium. |
|
|
Lekcja festiwalowa | Po co komu enzymy? - odkrywanie tajemnic reakcji enzymatycznych |
Podczas zajęć zbadamy wpływ temperatury, stężenia jonów wodorowych (pH) oraz inhibitora (czynnika hamującego) na szybkość reakcji przebiegającej z udziałem enzymu, na przykładzie fosfatazy kwaśnej. Aktywność fosfatazy kwaśnej silnie wzrasta w niektórych chorobach nowotworowych, w chorobach wątroby i kości. Stąd też jest wykorzystywana w diagnostyce medycznej jako tzw. enzym wskaźnikowy. Z kolei rolą fosfatazy u roślin jest uwalnianie fosforanu ze związków organicznych m.in. w warunkach stresu środowiskowego np. zasolenia, deficytu wody czy ataku patogenów. Jak zmienia się szybkość reakcji gdy enzym znajduje się w mniej sprzyjających warunkach? Na to i inne pytania postaramy się opowiedzieć podczas naszych wspólnych działań eksperymentalnych w laboratorium. |
|
|
Lekcja festiwalowa | PCR - wszechpotężna reakcja, niezbędna w każdym laboratorium |
Łańcuchowa reakcja polimerazy, w skrócie PCR, to podstawowa technika stosowana w każdym laboratorium. Stosowana do badania i poznawania genów, do wykrywania wirusów i GMO, a także do badań genetycznych w kryminalistyce. Podczas warsztatów przedstawimy tę prostą, ale wszechstronną metodę, pozwalającą wykryć nawet śladowe ilości materiału genetycznego. Uczestnicy zajęć będą mieli okazję, aby nauczyć się pipetować i rozcieńczyć DNA do homeopatycznych stężeń, a także wykonać własnoręcznie PCR i zwizualizować wyniki poprzez elektroforezę i skanowanie pod światłem UV. Dodatkowo w czasie trwania reakcji przedstawimy krótki wykład i zajrzymy do laboratorium inżynierii genetycznej. |
|
|
Lekcja festiwalowa | Para buch, koła w ruch – zależność intensywności oddychania komórkowego od temperatury otoczenia |
Oddychanie komórkowe jest wielostopniowym procesem utleniania substratu, któremu towarzyszy wytwarzanie energii użytecznej metabolicznie. Podczas gdy inne przemiany podstawowe dla życia wymagają specjalnych warunków i struktur, jak np. asymilacja CO2 przez rośliny, która odbywa się wyłącznie na świetle i w tkankach asymilacyjnych, oddychanie przebiega stale i w każdej żywej komórce, bez względu na jej stan fizjologiczny. Wszystkie żywe komórki są wyposażone w biochemiczny aparat oddechowy – enzymy katalizujące utlenianie substratów oddechowych. Pod względem biochemicznym oddychanie roślin i zwierząt jest bardzo podobne. Temperatura jest jednym z najważniejszych czynników mających wpływ na oddychanie. W warunkach polowych temperatura ciągle się zmienia, dlatego dokładna znajomość jej wpływu na natężenie oddychania jest konieczna, aby zrozumieć związek między oddychaniem, a produktywnością roślin. Z drugiej strony podczas oddychania zużywane są związki zapasowe, co obniża jakość przechowywanych płodów rolnych. Metody oznaczania intensywności oddychania komórkowego opierają się na pomiarach wydzielonego CO2 lub pobranego O2. Najczęściej stosowana technika to oznaczenie zmian zawartości CO2 metodą fotometryczną z wykorzystaniem analizatora gazów w podczerwieni, istnieją jednakże techniki pomiaru intensywności oddychania opierające się na prostych reakcjach chemicznych, które nie wymagają zastosowania wyrafinowanej aparatury, W trakcie zajęć uczniowie wykażą zależność między temperaturą, a intensywnością oddychania komórkowego (oznaczenie aktywności oddychania metodą miareczkową) oraz poznają działanie analizatora gazów w podczerwieni (pomiar stężenia CO2 metodą fotometryczną). |
|
|
Lekcja festiwalowa | PCR - wszechpotężna reakcja, niezbędna w każdym laboratorium |
Łańcuchowa reakcja polimerazy, w skrócie PCR, to podstawowa technika stosowana w każdym laboratorium. Stosowana do badania i poznawania genów, do wykrywania wirusów i GMO, a także do badań genetycznych w kryminalistyce. Podczas warsztatów przedstawimy tę prostą, ale wszechstronną metodę, pozwalającą wykryć nawet śladowe ilości materiału genetycznego. Uczestnicy zajęć będą mieli okazję, aby nauczyć się pipetować i rozcieńczyć DNA do homeopatycznych stężeń, a także wykonać własnoręcznie PCR i zwizualizować wyniki poprzez elektroforezę i skanowanie pod światłem UV. Dodatkowo w czasie trwania reakcji przedstawimy krótki wykład i zajrzymy do laboratorium inżynierii genetycznej. |
|
|
Lekcja festiwalowa | Podglądamy rośliny |
Co w komórce roślinnej się rusza? Liście roślin wodnych bywają b. cienkie. W świetle przechodzącym mikroskopu optycznego można wtedy zobaczyć pojedyncze komórki i niektóre większe organelle. Coś też w środku się rusza. Co i dlaczego? Czy plazmoliza zabija komórkę? Komórka roślinna ma ścianę komórkową i dlatego w pewnych warunkach środowiska zewnętrznego przechodzi plazmolizę. Coś się przemieszcza, ale bardzo wolno. Dlaczego się przemieszcza? Czy ten proces prowadzi do śmierci komórki? Czy zarodnik skrzypu może się poruszać? Zarodnik niesiony wiatrem oczywiście porusza się. Jednak nawet bez wiatru ta komórka (bo to pojedyncza komórka) wykonuje ruchy. Jaki jest ich cel? Jakie jest ich podłoże? Czy owoc fioletowy zawsze jest fioletowy? Owoce ligustru są ciemnofioletowe (aż czarne) od obecnych w miękiszu antocyjanów. Ale nie w każdych warunkach jest to kolor fioletowy. Zobaczymy, jak ten kolor zmienić. Czy można odróżnić ziarna pyłku żywe od martwych? Pojedyncza roślina wytwarza setki, a raczej tysiące ziaren pyłku. Część z nich dotrze na znamię słupka. Czy wszystkie przeżyją? Czy chloroplast może być czerwony? W mikroskopie fluorescencyjnym (trochę innym od typowego mikroskopu optycznego) chloroplast będzie widoczny jako struktura o barwie czerwonej. Dlaczego? Do czego służą takie sztuczki? Czy w mikroskopie elektronowym widać, że coś się rusza? Transmisyjny mikroskop elektronowy to b. duże powiększenia, ale też i wysokie podciśnienie wewnątrz. Czy da się tu zaobserwować (bardzo szczegółowo!) ruch organelli w żywej komórce? Jak szybka jest krwiożercza rosiczka? Mięsożerna rosiczka żywi się głównie owadami. Czy jest taka szybka, że zdąży złapać ofiarę, zanim ta ucieknie? |
|
|
Lekcja festiwalowa | Atak klonów - poznajemy roślinne kultury |
Rośliny dzięki swoim niezwykłym zdolnościom regeneracyjnym można klonować poprzez ich podział i regenerację w odpowiednich warunkach. Te właściwości wykorzystywane są w badaniach laboratoryjnych, ale także w komercyjnej produkcji roślin ozdobnych i uprawnych. Podczas spotkania uczestnicy będą mieli okazję zwiedzić laboratorium roślinnych kultur in vitro, dowiedzieć się jak można sterować wzrostem roślin przy użyciu różnych substancji, a także spróbować swoich sił w "klonowaniu" roślin czyli mikropropagacji. Ponadto uczestnicy dowiedzą się co łączy kultury in vitro i rośliny genetycznie modyfikowane, oraz jak założyć domowe laboratorium kultur in vitro.
|
|
|
Lekcja festiwalowa | Para buch, koła w ruch – zależność intensywności oddychania komórkowego od temperatury otoczenia |
Oddychanie komórkowe jest wielostopniowym procesem utleniania substratu, któremu towarzyszy wytwarzanie energii użytecznej metabolicznie. Podczas gdy inne przemiany podstawowe dla życia wymagają specjalnych warunków i struktur, jak np. asymilacja CO2 przez rośliny, która odbywa się wyłącznie na świetle i w tkankach asymilacyjnych, oddychanie przebiega stale i w każdej żywej komórce, bez względu na jej stan fizjologiczny. Wszystkie żywe komórki są wyposażone w biochemiczny aparat oddechowy – enzymy katalizujące utlenianie substratów oddechowych. Pod względem biochemicznym oddychanie roślin i zwierząt jest bardzo podobne. Temperatura jest jednym z najważniejszych czynników mających wpływ na oddychanie. W warunkach polowych temperatura ciągle się zmienia, dlatego dokładna znajomość jej wpływu na natężenie oddychania jest konieczna, aby zrozumieć związek między oddychaniem, a produktywnością roślin. Z drugiej strony podczas oddychania zużywane są związki zapasowe, co obniża jakość przechowywanych płodów rolnych. Metody oznaczania intensywności oddychania komórkowego opierają się na pomiarach wydzielonego CO2 lub pobranego O2. Najczęściej stosowana technika to oznaczenie zmian zawartości CO2 metodą fotometryczną z wykorzystaniem analizatora gazów w podczerwieni, istnieją jednakże techniki pomiaru intensywności oddychania opierające się na prostych reakcjach chemicznych, które nie wymagają zastosowania wyrafinowanej aparatury, W trakcie zajęć uczniowie wykażą zależność między temperaturą, a intensywnością oddychania komórkowego (oznaczenie aktywności oddychania metodą miareczkową) oraz poznają działanie analizatora gazów w podczerwieni (pomiar stężenia CO2 metodą fotometryczną). |
|
|
Lekcja festiwalowa | Rośliny nie są same – związki symbiotyczne roślin w skali mikro i makro |
Mikoryza – co łączy grzyby i korzenie roślin. Korzenie większości roślin zasiedlają symbiotyczne grzyby, tworzące w korzeniach drzewka, zwoje lub pęcherzyki. Czy da się zobaczyć grzyby w korzeniach? Tzw. barwienie tuszem. Porosty – brygada do zadań specjalnych. Pomysłowe glony i grzyby dzięki symbiozie są w stanie zasiedlać ekstremalne siedliska (pustynie, stepy, tundre, góry, skały, beton itd.). Analiza makro- i mikroskopowa, test gąbki. Po co sagowcom korale? Niektóre korzenie sagowców rosną do góry i wyglądają jak korale. W mikroskopie fluorescencyjnym (trochę innym niż mikroskop optyczny) korzenie będą świecić na czerwono. Sprawdzimy dlaczego? Po co roślinom tropikalnym brodawki na liściach? Liście służą nie tylko do fotosyntezy, mogą stanowić również schronienie dla pożytecznych bakterii. Jakich i dlaczego?? Zobaczymy wnętrze brodawek liściowych i ich mieszkańców. |
|