To samo, czy nie to samo?
Matematycy często starają się dojść do sedna sprawy i nie zwracają uwagi na nieistotne szczegóły. Gdy kreślimy graf połączeń elektrycznych nie jest istotne jakim kolorem oznaczymy poszczególne segmenty sieci, nawet często nie jest istotne, czy proporcje odległości są zachowane; ważne jest, żeby punkty lutowania były umieszczone we właściwej kolejności (relacja sąsiedztwa).
Dwa obiekty są izomorficzne, jeśli są nierozróżnialne pod kątem wykonywania na nich działań i spełniania relacji. Na przykład liczby dodatnie, kiedy rozważamy tylko dodawanie i porównywanie ich relacją mniejszości będą nierozróżnialne od liczb ujemnych z dodawaniem i relacją większości. Znalezienie izomorfizmu jest tu proste: wystarczy z każdą liczbą dodatnią skojarzyć z drugiej strony jej liczbę przeciwną. Czasami jednak wyznaczenie takiego izomorfizmu jest nieoczywiste i bywa bardzo trudne, nawet jeśli wiemy, że obiekty są izomorficzne. Ta trudność może okazać się zaletą.
W czasie wykładu zademonstrujemy przykłady nieoczywistych izomorfizmów, kiedy z pozoru zupełnie różne obiekty zachowują się tak samo. Będzie o węzłach, liczbach, grafach.